COPING SKILLS, MOTIVATIONAL PROFILES, AND PERCEIVED
MOTIVATIONAL CLIMATE IN YOUNG ELITE ICE HOCKEY AND SOCCER
PLAYERS

József Bognár1, Gábor Géczi1, Géza Vincze1 & Attila Szabo2,3
1Semmelweis University, Faculty of Physical Education and Sport Sciences, Budapest
2Eötvös Loránd University, Faculty of Education and Psychology, Budapest
3National Institute for Sport Talent Care and Sports Services
bognar@mail.hupe.hu

Abstract

The purpose of this study was to compare coping skills, motivational profiles, and perceived motivational climate in elite U18 male ice hockey (n=20) and soccer (n=23) players (n=14). The instruments used were the Perceived Motivational Climate in Sport Questionnaire -2, the Sport Motivation Survey, and the Athletic Coping Skills Inventory -28. The questionnaires-based data revealed that both players could be considered task-oriented, exhibiting high levels of confidence, achievement motivation, concentration, and intrinsic motivation. The results also revealed that in contrast to ice-hockey players, soccer players demonstrated higher levels of important role perception, freedom from worry, and coachability, as well as more task orientation than ice-hockey players. However, ice hockey players demonstrated significantly higher perception of unequal recognition than soccer players. Consequently, coaches in different talent development programs need to emphasize the individuality and quality, effort as related to success, aid in providing clear goals, and present optimal challenge in harmony with the players’ competence.

Key words: elite athletes, ice hockey, motivation, motivational climate, soccer, task orientation

Introduction

Sport science has a significant role in identifying, monitoring, and developing young talented athletes (Williams & Reilly, 2000). For best practices and success, coaches need to understand the complex processes in developing athletic expertise. Amongst others, systematic training and well-planned programs may be significant in youth development programs (Williams & Reilly, 2000). Researchers also demonstrated that anthropometric, physiological, and skill attributes could be used to predict anticipated skills and expertise in sports (Hoare & Warr, 2000). In addition, prediction could be complemented with continuous measurement of physical, cognitive, and perceptual skills, intrapersonal and interpersonal characteristics, and emotional stability (Nideffer et al, 2001).

The volume and specificity of the most determinant factors in the development of elite athletes seems to be of key importance in understanding the culmination of the athletic expertise (Bloom, 1985; Tenenbaum, 1999). Abilities determining motor and physical skills, cognitive and perceptual abilities, self-efficacy, affective experiences, and coping strategies, as well as the quality and amount of practice all may play crucial roles in the development process (Tenenbaum, 1999).
A significant focus in sport psychology research is to find means that support coaches and scouts in talent development processes (Sands & McNeal, 2000) and to enhance athletic performance (Géczi et al, 2008). Such investigations are based on the assumption that psychological characteristics should be accepted as important determinants of athletic performance and success (Trzaskoma-Bicsérdy et al. 2007).

Researchers have invested substantial effort in identifying the psychological characteristics that elite athletes require to excel in different sport settings (Smith et al, 1995). According to the literature, people inherit predispositions and the outcomes in various life-endeavours are driven by behavioural choices (Rose, 1985). Constructivists in psychology believe that people with certain responsibilities and consequences are active participants in their own life. How a person views her or his life seems to depend on how her or his perceptions are constructed. These constructs depend on a variety of environmental and personal (genetic) factors.

In order to become a successful athlete, these constructs need to include persistence, dedication, motivation, hard work, and effort (Géczi et al. 2008). Studies comparing and contrasting elite and non-elite athletes have found that successful athletes are more committed to their sport (Davis & Mogk, 1994) and show stronger goal orientation than less successful athletes (Goudas, Theodorakis, & Karamousalidis, 1998; Orlick & Partington, 1988). Elite athletes also demonstrate higher concentration levels (Junge et al, 2000), higher confidence levels (Gould, Dieffenbach & Moffet, 2002), easier or better coachability (Bebestos & Antonious, 2003) and more stable anxiety levels (Kais & Raudsepp, 2005) than non-elite athletes. On the other hand, Williams and Reilly (2000) found no specific characteristics that would definitely differentiate elite athletes from the non-elite athletes.

It is generally accepted that poor performance is associated with a high level of stress and worry or anxiety, which prevent athletes from performing in their optimal zone (Hanin, 1989; Smith, Smoll & Schutz, 1990). Cognitive anxiety is negatively related to performance. Both, too low and too high levels of anxiety interfere with the optimal performance (Jones, 1995).

There seems to be a meaningful association among anxiety, confidence, and coping skills (Cresswell & Hodge, 2004; Hammermeister & Burton, 2001). People with appropriate coping skills could manage stress and adversity with self-confidence, however, people with inadequate coping skills tend to perceive anxiety as a threatening factor (Dolbier, Soderstrom & Steinhardt, 2001).

The development of coping research has been greatly influenced by the works of Lazarus (1991) and Folkman (1984). Coping is conceptualized as a contextual mediator between the person and the environment. It is a relationship between the perceived demand (stress) and one’s ability to cope with the demand. This evaluation has numerous psychological, physiological and behavioral outcomes (Lazarus, 1993). Coping could be used to regulate emotions, to modify the perception of the situations anchored with unpleasant experiences (Folkman & Lazarus, 1985), and also to withdraw from a stressful task or situation (Endler & Paeker, 1990).

In addition, coping behaviors in conjunction with mood, motivation, and effort are all associated with goal orientation (Duda, et al, 1995; White & Duda, 1994). Motivational profiles have important implications for talent identification and development of the young, skilled athletes (Stewart & Meyers, 2004). Frederick and Ryan (1993) have found that athletes with high levels of self-determination and intrinsic motivation have relatively low levels of depression, anxiety, and also demonstrate high levels of self-esteem and vitality. Most studies agree that intrinsically motivated and task oriented athletes are more likely to enjoy participating in sport and less likely to drop out (White, Duda, & Keller, 1998). Individuals with high task orientation tend to believe that success requires most of all effort, intrinsic motivation, and cooperation with peers (Duda & Nicholls, 1992). Intrinsically
motivated athletes tend to persist at certain activities, select challenging tasks, invest effort (Deci et al. 1991, Ferrer-Caja & Weiss, 2000) and they are driven by perceived competence, perceived autonomy, achievement goal orientation, and perceived usefulness (Hassandra et al, 2003).

Petherick and Weigand (2002) have reported that extrinsic motivation is greatly influenced by the motivational climate. Individuals with ego orientation believe that failure is mostly attributed to lack of ability, skills, and effort (Treasure & Roberts, 2001). These athletes tend to aim for less challenging tasks, enjoy their sport less, are more extrinsically motivated, all which then may lead to dropout (Vallerand & Losier, 1999). Several studies report that youth with high task orientation are also more intrinsically motivated and they experience success more often than youth with high ego orientation (Eccles & Wigfield, 2002, Ryan & Deci, 2000ab).

Purpose of study

Ice hockey and soccer are among the most popular team sports with youngsters in Hungary. The literature shows that the areas of motivation, perception of motivational climate, and coping in elite youth sport have attracted little attention in these youth sports. Also, comparative studies using these psychometric measures on young elite athletes from different sporting activities are not readily available in the literature. Clearly, there is a need for empirical research on motivational profiles as related to other psychological variables (Murica, Gimeno, & Coll, 2007). Exploring the interaction between the above mentioned psychological traits of elite young players may contribute to the appropriate selection, talent development, and also the advancement and success of specific training methods. Hence, the goal of this study was to describe young elite athletes’ coping skills, motivational characteristics, and perceived motivational climate, and to compare ice hockey and soccer players on these measures.

Methods

Two highly popular sports clubs were solicited to participate in the investigation. Both the ice hockey and the soccer club are among the most successful teams in the country. Participants in this study were men’s soccer (n=23) and ice hockey (n=20). Players all ranged in age from 16 to 18 years (M age=17.54, SD=.81). Both athletic teams in this study came first in last year’s national championship in their age group. Participants eligible for this study were those U18 players who had regularly participated in the championship training and competition. All participants and their parents signed an informed consent form assuring confidentiality and explaining voluntary participation in this study.

Measures

Perceived Motivational Climate in Sport Questionnaire (PMCSQ-2)

PMCSQ-2 was chosen in this study because it allows the researcher to identify how well athletes enjoy their sports and also how they feel about the climate that the coach creates in the practices (Newton et al. 1999). The instrument includes the following scales: a) cooperative learning; b) important role; c) effort/improvement; d) punishment for mistakes; e) unequal recognition; and f) intra-team member rivalry. Cooperative learning, important
role and effort/improvement scales measure task-involving climate, whereas punishment for mistakes, unequal recognition, and intra-team member rivalry scales measures ego-involving climate. PMCSQ-2 consists 33 items using a 5-point Likert-scale (1 = Strongly disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree). Alpha coefficient of .87 for Task-involving climate and .83 for Ego-involving climate indicate a good internal consistency (Seifriz, Duda & Chi, 1992). The Hungarian version of PMCSQ-2 has an internal validity of 0.85 for Task and 0.82 for Ego oriented climate (Révész, et al, 2008).

Athletic Coping Skills Inventory-28 (ACSI-28)

For measuring athletes’ coping skills, ACSI-28 was also used in this study (Smith et al., 1995). ACSI-28 consists of 28 items in seven subscales (coping with adversity, peaking under pressure, goal setting/mental preparation, concentration, freedom from worry, confidence and achievement motivation, and coachability). ACSI-28 demonstrated a full-scale internal consistency of .86 with all subscales ranging from .62 to .78 (Smith et al., 1995). The Hungarian version of ACSI-28 also demonstrates acceptable Cronbach alpha coefficients of .61 for coping with adversity, .84 for peaking under pressure, .67 for goal setting/mental preparation, .64 for concentration, .72 for freedom from worry, .59 for confidence and achievement motivation, and .69 for coachability (Jelinek, 2000).

Sport Motivation Scale (SMS)

The 28-item SMS instrument, which was developed by Pelletier and colleagues (1995), measures components of Amotivation, Extrinsic and Intrinsic Motivation. The instrument is constructed of a 7-point Likert Scale ranging from 1 (Does not correspond) to 7 (Corresponds exactly). The Cronbach alpha internal coefficients for the original version ranged between .66 and .80 (Pelletier et al., 1995) and it was .65 to .85 in the Hungarian version of the SMS (Tsang et al., 2005).

Data collection and analysis

At the beginning of the survey, coaches were contacted if they were interested in taking part in the survey. After receiving a positive answer, U18 players and their parents were also contacted for their written consent. All psychometric instruments were filled by the eligible players from both teams before a training session. There was a coach and one of the researchers present during data collection to be able to answer any questions regarding the surveys.

Data analysis included a detailed description of the sample (Means, Standard Deviations, and Std. Error of Mean). Independent t-tests were used in searching for statistically significant differences between ice-hockey and soccer players and p<.05 was accepted as an index of a significant difference. While a multivariate analysis of variance (MANOVA) would have been more appropriate in comparing the overall differences in psychological characteristics between ice hockey and soccer players, we were more interested in differences in unique psychological factors and meaningful differences and compensated for the lack of MANOVA by calculating the effect sizes when statistical significance was detected. According to Cohen (1992) an effect size of around .20 represents small, meaningless differences; an effect size of around .50 reflects differences that merit consideration; and effect sizes larger than .80 are considered to reflect large and
meaningful differences. The SPSS 17.0 software for Windows was used for all statistical analyses.

Results

Task orientation (M=12,5407) appeared to have a lot higher values than Ego orientation (M=9,1145) in PMCSQ-2 in the combined sample of elite U18 ice-hockey and soccer players (Table 1). The meaningfulness of the difference was confirmed by an undisputable high effect size (Cohen’s d = 1.96). Within the task involving climate, effort/improvement (M=4,3953) had the highest scores, while important role (M=4,1628) and cooperative learning values were less (M=3,9826). All ego involving climate subscales had lower level of measures in the following order: intra-team member rivalry (M=3,4524), unequal recognition (M=2,8605), and punishment for mistakes (M=2,7674).

Table 1. Descriptive statistics for the subscales of PMCSQ-2 (N=43)

(* p < .05; an effect size >.50 could be considered to reflect meaningful differences)

<table>
<thead>
<tr>
<th>Subscale</th>
<th>Ice hockey</th>
<th>Soccer</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperative learning</td>
<td>3.738</td>
<td>4.196</td>
<td>3.983</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.944</td>
<td>0.776</td>
<td>0.879</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.211</td>
<td>0.162</td>
<td>0.134</td>
</tr>
<tr>
<td>Important role</td>
<td>3.940</td>
<td>4.357</td>
<td>4.163</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.562</td>
<td>0.391</td>
<td>0.517</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.126</td>
<td>0.081</td>
<td>0.079</td>
</tr>
<tr>
<td>Effort/improvement</td>
<td>4.269</td>
<td>4.505</td>
<td>4.395</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.494</td>
<td>0.409</td>
<td>0.460</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.110</td>
<td>0.085</td>
<td>0.070</td>
</tr>
<tr>
<td>Punishment for mistakes</td>
<td>2.800</td>
<td>2.739</td>
<td>2.767</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.632</td>
<td>0.529</td>
<td>0.573</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.141</td>
<td>0.110</td>
<td>0.087</td>
</tr>
<tr>
<td>Unequal recognition</td>
<td>3.171</td>
<td>2.590</td>
<td>2.861</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.868</td>
<td>0.968</td>
<td>0.958</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.194</td>
<td>0.202</td>
<td>0.146</td>
</tr>
<tr>
<td>Intra-team member rivalry</td>
<td>3.467</td>
<td>3.439</td>
<td>3.452</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.643</td>
<td>0.832</td>
<td>0.739</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.144</td>
<td>0.177</td>
<td>0.114</td>
</tr>
<tr>
<td>TASK</td>
<td>11.946</td>
<td>13.058</td>
<td>12.541</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>1.780</td>
<td>1.413</td>
<td>1.672</td>
</tr>
<tr>
<td>Std. Error</td>
<td>0.398</td>
<td>0.295</td>
<td>0.255</td>
</tr>
<tr>
<td>EGO</td>
<td>9.438</td>
<td>8.820</td>
<td>9.115</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>1.620</td>
<td>1.969</td>
<td>1.816</td>
</tr>
</tbody>
</table>

As indicated by ACSI-28 scales, both concentration (M=3,3023) and confidence and achievement motivation (M=3,2907) had relatively high scores, followed by peaking under pressure (M=3,2209) (Table 2). Coping with adversity (M=3,0407) had somewhat lower scores, along with goal setting/mental preparation (M=2,6453). Both freedom from worry (M=1,9012) and coachability (M=1,8023) had comparatively low values.
Table 2. Descriptive statistics for the subscales of ACSI-28-H (N=43)
(‘p < .05; an effect size > .50 could be considered to reflect meaningful differences)

<table>
<thead>
<tr>
<th>Subscale</th>
<th>Ice hockey</th>
<th>Soccer</th>
<th>Total</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>effect size d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coping with adversity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.088</td>
<td>0.552</td>
<td>0.123</td>
</tr>
<tr>
<td>Ice hockey</td>
<td>3.000</td>
<td>0.369</td>
<td>0.077</td>
<td></td>
<td>3.041</td>
<td>0.459</td>
<td></td>
</tr>
<tr>
<td>Soccer</td>
<td></td>
<td></td>
<td></td>
<td>3.200</td>
<td>0.510</td>
<td>0.114</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3.221</td>
<td>0.434</td>
<td>0.066</td>
<td></td>
<td>3.041</td>
<td>0.459</td>
<td></td>
</tr>
<tr>
<td>Peaking under pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.613</td>
<td>0.553</td>
<td>0.124</td>
</tr>
<tr>
<td>Ice hockey</td>
<td>2.674</td>
<td>0.429</td>
<td>0.090</td>
<td></td>
<td>2.645</td>
<td>0.486</td>
<td></td>
</tr>
<tr>
<td>Soccer</td>
<td></td>
<td></td>
<td></td>
<td>2.727</td>
<td>0.452</td>
<td>0.094</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2.727</td>
<td>0.486</td>
<td>0.074</td>
<td></td>
<td>2.645</td>
<td>0.486</td>
<td></td>
</tr>
<tr>
<td>Goal setting/mental preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.338</td>
<td>0.408</td>
<td>0.091</td>
</tr>
<tr>
<td>Ice hockey</td>
<td>3.277</td>
<td>0.452</td>
<td>0.094</td>
<td></td>
<td>3.302</td>
<td>0.428</td>
<td></td>
</tr>
<tr>
<td>Soccer</td>
<td></td>
<td></td>
<td></td>
<td>3.272</td>
<td>0.452</td>
<td>0.094</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3.302</td>
<td>0.428</td>
<td>0.065</td>
<td></td>
<td>3.302</td>
<td>0.428</td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.738</td>
<td>0.469</td>
<td>0.105 .62</td>
</tr>
<tr>
<td>Ice hockey</td>
<td>2.044</td>
<td>0.492</td>
<td>0.103</td>
<td></td>
<td>1.901</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>Soccer</td>
<td></td>
<td></td>
<td></td>
<td>1.850</td>
<td>0.518</td>
<td>0.138</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.850</td>
<td>0.518</td>
<td>0.089</td>
<td></td>
<td>1.901</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>Freedom from worry *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.750</td>
<td>0.618</td>
<td>0.138</td>
</tr>
<tr>
<td>Ice hockey</td>
<td>1.848</td>
<td>0.558</td>
<td>0.116</td>
<td></td>
<td>1.802</td>
<td>0.581</td>
<td></td>
</tr>
<tr>
<td>Soccer</td>
<td></td>
<td></td>
<td></td>
<td>1.600</td>
<td>0.673</td>
<td>0.140</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.600</td>
<td>0.673</td>
<td>0.126</td>
<td></td>
<td>1.802</td>
<td>0.581</td>
<td></td>
</tr>
</tbody>
</table>

When analyzing the subscales of Sport Motivation Scale, a generally low level of amotivation is evident (M=1,7093) along with relatively high intrinsic motivation scores (M=5,8295) (Table 3). There were only three subscales with meaningful statistical differences among young elite ice-hockey and soccer players’ perceived motivational climate measures. Based on t-tests and effect size (d) calculations, soccer players had significantly higher scores in important role (t=-2.851, p=.007, effect size d =.87) and task orientation (t=-2.280, p=.028, effect size d = .69) than ice-hockey players. Also, ice-hockey players showed significantly higher unequal recognition than soccer players (t=2.060, p=.046, effect size d = .63)
There was only one subscale in ACSI-28 demonstrating a significant difference between soccer and ice-hockey players. Ice-hockey players showed significantly lower values in freedom from worry than soccer players (t=-2.077, p=.044, effect size $d = .62$).

There were no statistical differences in amotivation, extrinsic motivation and intrinsic motivation among ice-hockey and soccer players.

Discussion and conclusions

The current research report shows that elite young athletes demonstrate refined perceived motivational climate, coping, and motivation measures. Also, the present results show some clear-cut differences in a number of key psychological variables between ice-hockey and soccer players.

As mentioned earlier, psychological characteristics are considered essential determinants for athletic performance and success (Meyers et al, 1999; Smith et al, 1995). According to our results, U18 elite players in this study demonstrate a high level of effort/improvement and a relatively high level of important role. Punishment for mistakes and unequal recognition was - on the other hand - relatively low. Our study supports earlier findings (Eccles and Wigfield, 2002), suggesting that successful youth are characterized by high task orientation. Elite young players in this study may also be portrayed with task-involving climate, so they could feel that cooperative learning is encouraged, each player has an important role on the team, while effort and improvement are emphasized.

It was also evident that concentration, confidence and achievement motivation and peaking under pressure had considerably high levels. In accordance with past research (Gould, Dieffenbach & Moffet, 2002; Junge et al, 2000), the current results strengthen the conjecture that young elite athletes demonstrate relatively high concentration levels and high levels of confidence. A higher level of concentration probably means that elite U18 players can focus on the given task even when unexpected situations and a higher level of confidence and achievement motivation most likely means that players consistently give close to 100% during both practice and game situations (Smith et al, 1995). Also, from relatively high scores of peaking under pressure and coping with adversity it may be concluded that young U18 ice-hockey and soccer players could perform well under pressure.

Contrary to earlier findings (Bebestos & Antonious, 2003; Goudas, Theodorakis, & Karamousalidis, 1998), we have found that elite athletes’ goal setting/mental preparation and coachability do not seem to be at a high level, in fact, the values of coachability tends to be fairly low. Due to the quite low level of coachability, it may be assumed that these young elite athletes may not be open (receptive) enough to coaches’ instructions and constructive criticism. Reasonably low scores of goal setting/mental preparation may very well mean that these young athletes do not plan in advance and mentally may not prepare properly for their training and competition.

The low scores of freedom from worry indicate that elite young players in this study worry too much about making mistakes. Thus the findings in this study could not provide support for the contention that high level of worry is negatively influencing athletes’ overall performance and success level (Martens, Vealey & Burton, 1990).

The results also showed that intrinsic motivation was fairly high and amotivation was relatively low in the studied sample. Players in this study could be considered intrinsically motivated and task oriented, which may be the most important reasons for their success (Ryan & Deci, 2000a; White, Duda, & Keller, 1998). According to our results, intrinsic motivation and task orientation seem to have a more important role in young athletes’ success than goal setting, freedom from worry, and coachability.
Csíkszentmihályi (1975) has indicated that individuals are most often intrinsically motivated when the level of task challenge is suited to one’s skills. When the challenge is greater than the skill, anxiety emerges, and if the skill is high in contrast to the challenge, boredom is the likely outcome (Csíkszentmihályi, 1975). Hence, coaches need to focus on creating a climate in which the athletes’ skills are matched with the challenges presented during practice. They also need to plan for individually challenging practices ensuring that their athletes could be intrinsically motivated.

As it was expected, there were a number of significant differences between ice hockey and soccer players. Due to the fact that our sample consisted of young elite athletes from very successful teams or sports clubs, the results may be used in further improvement in talent care and management as elaborated below.

The results of the current study revealed that soccer players had higher levels of important role, freedom from worry, and coachability and were more task oriented than ice-hockey players. Therefore, soccer players appear to be more open for instructional and constructive criticisms than ice-hockey players. However, ice hockey players demonstrated significantly higher unequal recognition than soccer players. Hence, they cannot remain positive and enthusiastic when things are going badly for them and they feel more threatened than challenged by pressuring situations. Therefore, generally, they cannot perform well under pressure. The lesson is simple: Coaches need to introduce practices that lead to better performance under pressure. Simulation training may be one of several options.

Thomas and Thomas (1999) found that coaches should design practice for individuality and quality, relate effort to success, provide clear goals, and also objectively mark improvement. These issues seem extremely important for coaches working with young athletes. It is well known that the field of sport is a particularly optimal place for challenge and competence (Larson, 2000). Coaches in talent development programs also need to emphasize these issues in their daily practices.

References

